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Summary 

We review sources of bias which can affect non-randomized cohort studies of non-

specific effects of vaccines on child mortality. Using examples from the literature on 

non-specific effects, we describe different sources of selection and information bias, 

and, where possible, outline analysis strategies to mitigate or eliminate such biases. 

Introduction 

Much of the controversy surrounding the impact of routine immunizations on 

childhood survival, particularly the putative increased mortality following DTP 

immunization, has focused on methodological issues. This is natural: answering 

apparently straightforward questions about the effects of vaccinations presents tough 

methodological challenges, because vaccines have not been randomly allocated and 

the available data are often incomplete.  Indeed, all the observational studies that 

have been undertaken on the topic suffer from methodological shortcomings of one 

kind or another.  

A striking feature of the literature on the non-specific effects of vaccines on child 

mortality is the sheer size of these putative effects. A recent review (Aaby et al., 2007) 

reported highly heterogeneous results, ranging from a 5-fold reduction to a 3-fold 
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increase in mortality after DTP vaccine.  Similarly large effects have been reported 

for other vaccines, notably measles vaccine and BCG (Aaby et al., 1995, Kristensen et 

al., 2000). Two related questions arise: first, are these apparently very strong 

associations genuine, or are they the result of bias? Second, what are the reasons for 

the heterogeneities (indeed, the contradictory results) found in different studies?  

The impact of differences in data collection procedures and data analysis has, quite 

properly, given rise to much discussion. Our purpose is to review these 

methodological issues, assess their likely impact on results, and discuss ways in 

which they may be addressed. We first consider selection bias, and how it might be 

controlled. Then we discuss sources of information bias, including survival bias. 

Finally, we mention some further issues of analysis. 

Selection bias 

Possibly the single most important issue facing observational studies of the impact of 

vaccines on child mortality is non-random allocation of vaccines, which may induce 

a spurious association between vaccination and mortality (Fine et al. 2009). This bias 

may be regarded as a selection bias (children at lower or higher risk of mortality 

being differentially selected for vaccination) or as a form of confounding by factors 

associated with both receipt of vaccination and mortality. 

The statistical tools available for controlling confounding in observational studies 

include: specifying appropriate inclusion and exclusion criteria; allowing for 

measured confounders, either directly or via propensity scores; use of instrumental 

variables; undertaking studies in vaccinees only; comparing mortality in males and 

females; and within-individual analyses. We consider each of these options in turn. 

 

Inclusion and exclusion criteria 

 

Children included in observational studies may differ in ways that affect their 

chances of being vaccinated. For example, some children may be ineligible for 

vaccination owing to other health conditions; they may also experience higher 

mortality. Such children are often excluded from randomized trials. Some 

observational studies have been shown to be sensitively dependent on which groups 

are included in the analysis (Aaby et al., 2006).  

 

To reduce selection bias from inclusion of children who are ineligible for vaccination, 

appropriate inclusion and exclusion criteria should be applied where possible. These 

criteria should ideally relate to variables measured before the age at which 

vaccinations are administered, so as to avoid introducing further bias.  

 

Direct adjustment for measured confounders 
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This is the most commonly used method of adjustment: potential confounders are 

included as covariates or stratification variables in an appropriate model (for 

example, a Cox survival model). However, it is a puzzling feature of studies of 

childhood survival that such adjustments often (though not always) have little 

influence on the results (Vaugelade et al., 2004, Moulton et al., 2005, Aaby et al., 2006, 

Elguero et al., 2005). There are several possible reasons for this (other than absence of 

any confounding):  

 

(a) the relevant variables have not been measured (and indeed might not even be 

known);  

 

(b) the relevant variables (e.g., socioeconomic status, health status) have been 

represented by proxy variables with which they are only weakly correlated, and 

which can at best only partly control for selection bias;  

 

(c) the model used to adjust for covariates may not be sufficiently rich (for example it 

may not contain relevant interactions), owing to the low number of deaths;  

 

(d) controlling confounders via fixed covariates may be flawed, since vaccination 

occurs over time: some children might die before they have the opportunity to be 

vaccinated, and the selection that determines whether a child is vaccinated or not is a 

dynamic process;  

 

(e) presence of a large bias from other causes (e.g. information bias) which masks the 

effect of confounders, so that adjusting for confounders has only a small effect on the 

results. 

 

Adjustment for selection effects by propensity scores 

 

An alternative method of adjusting for selection effects is via propensity scores 

(Rosenbaum and Rubin, 1983). This approach has been used by (Lehmann et al., 

2005) and (Moulton et al., 2005).  

 

The propensity score method involves two stages. First, a new variable is calculated, 

measuring the propensity for a child to be vaccinated; this calculation is typically 

done using logistic regression of vaccination on the available covariates and their 

interactions. In a second stage, the association between mortality and vaccination is 

investigated in an analysis stratified according to the levels of the propensity score.  

 

There has been much debate about the pros and cons of propensity score adjustments 

in epidemiology, compared to direct adjustments (Drake and Fisher, 1995). An 

advantage of propensity score methods is that they allow for a richer model to be 

used to adjust for selection biases, in circumstances where there are relatively few 
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deaths and vaccination is far from universal. However, the method might not be 

useful in highly vaccinated populations, since the ‘high propensity’ strata are likely 

to contain few unvaccinated individuals. 

 

Time-varying propensity scores 

 

Propensity scores provide no solution to problems (a) and (b) listed above, but may 

help to mitigate (c). However, most importantly, the propensity scores so far used 

have all been fixed in time, and therefore also suffer from the shortcoming detailed in 

(d). 

 

An improved adjustment method would be to construct dynamic propensity scores, 

so as to allow for mortality, censoring and changes in the propensity of vaccination 

with age, as well as different vaccination patterns. Thus, at each time of death, a new 

propensity score would be calculated, taking into account the entire history of the 

individuals included in the risk set at that time. This would also allow past 

vaccination histories to be taken into account in the calculation of propensity scores. 

 

Such an approach has been developed for single treatments (Li et al., 2001, Lu, 2005). 

An application to studies of vaccination would require consideration of several types 

of vaccines, and perhaps allowance for distinct vaccination histories. We recommend 

that dynamic propensity score matching be considered in future studies. The 

methodological aspects of such an approach as it applies to vaccines merit further 

investigation. 

 

Instrumental variables 

 

Adjustments using propensity scores rely on the confounders having been measured. 

Instrumental variables analyses, on the other hand, enable unmeasured confounders 

to be controlled (Angrist et al., 1996). In the present context, the instrumental variable 

must satisfy three conditions: (a) it should be associated with vaccination; (b) it 

should be associated with mortality only through vaccination; and (c) it should not 

be associated with any confounder, measured or otherwise, of the association 

between vaccination and mortality. 

 

Though it is difficult to think of a suitable instrument in the present context, future 

studies should at least consider this method of analysis. On the rare occasions in 

which they occur, natural experiments may provide a type of instrumental variable. 

In such instances, who gets vaccinated is heavily influenced by external factors, thus 

reducing selection biases. Examples where such an approach has been used include 

situations in which vaccines were missing or available only during certain periods 

(Aaby et al., 2004, Garly et al., 2004), or when vaccination was interrupted owing to 

war (Aaby et al., 2002, Aaby et al., 2003). 
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Studies in vaccinees 

 

One way to avoid bias resulting from  selecting children for vaccination might be to 

undertake studies in vaccinees. Thus, for example, mortality rates might be 

compared in children receiving BCG + DTP and in children receiving BCG only 

(Chan et al., 2007). 

 

Although the groups being compared have different vaccination histories, it may be 

that confounding due to type and number of vaccines received is less serious than 

that resulting from a comparison between vaccinated and unvaccinated children.  

 

Though studies of the relative impact of different vaccines in vaccinees may be 

important in defining the research agenda, they can suffer from problems of 

interpretation: for example, if mortality following BCG and DTP is greater than that 

following BCG only, this could be consistent with the following scenarios: (a) both 

BCG and DTP are associated with higher mortality (than absence of any vaccination); 

(b) BCG and BCG + DTP are both associated with lower mortality; (c) BCG is 

associated with lower mortality and BCG + DTP with higher mortality. It is not 

possible, without an unvaccinated group, to differentiate between these possibilities.  

 

In some circumstances (such as near-universal vaccination) unvaccinated groups 

may not be available and only vaccine – vaccine comparisons can be made. Such 

comparisons can also be made within studies that do include unvaccinated groups. 

Where an unvaccinated group can be recruited, we recommend doing so. 

 

Comparing mortality rates in males and females 

 

Some of the hypotheses about vaccination and child survival relate to possibly 

differential effects of a vaccine in boys and girls. This suggests a particular kind of 

within-vaccine group analysis, in which mortality is compared between males and 

females within vaccinated and unvaccinated groups. Such comparisons will control 

for multiplicative factors associated with vaccination provided that these apply 

equally to boys and girls.  

 

Modelling selection bias in multi-vaccine studies 

 

The paradigm underlying studies in vaccinees only is that selection bias is associated 

with vaccination per se, rather than vaccination with any particular vaccine or 

combination of vaccines. While this concept should be scrutinised and tested, and 

rejected if found wanting, it does nevertheless provide a useful framework in which 

to interpret results in studies involving several vaccines and vaccine combinations.  
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In particular, selection bias and genuine vaccine-associated biological effects may 

produce different interaction patterns between vaccines. Suppose that two vaccines, 

A and B, are given within a narrow age range, and that data are available on 

mortality rates after vaccine A, vaccine B, both vaccines A and B, and neither vaccine 

(the unvaccinated group). Then if the observed effect on mortality is a spurious effect 

due solely to selection bias, one might expect that the effect of vaccines A, B, and A 

and B together would be the same, since selection bias is associated with vaccination 

per se. 

 

An example is provided in Table 1, using data from (Moulton et al., 2005). In males, 

the mortality ratios associated with receipt of DTP only, BCG only, and both DTP 

and BCG, are of similar magnitude, ranging between 0.54 and 0.59. The fact that the 

three estimates are similar is suggestive of a selection effect: children who are 

vaccinated are selected from a subgroup in which mortality is about half that of those 

who are unvaccinated. In contrast, in females, the mortality ratio in children having 

received both vaccines is higher than the mortality ratio in children having received 

DTP only or BCG only: this cannot easily be explained by a selection effect, and 

suggests that there might be a biological interaction between the vaccines. The 

plausibility of such a complex gender interaction would of course require 

confirmation from other studies. 

 

[Table 1 about here] 

 

Evidence for a biologic effect or a selection effect of this kind may be investigated by 

fitting regression models with codings of the vaccine variables that reflect the 

hypotheses of interest (Moulton et al. 2005).   

Self-matched analyses 

Self matched analyses control for all age-invariant confounders that enter 

multiplicatively, whether measured or not (Farrington and Whitaker, 2006). 

However, only changes in mortality by time since vaccination are estimable: for 

example, if DTP vaccination doubled the mortality rate at all time after vaccination, 

the relative mortality shortly after vaccination compared to long after vaccination 

would be equal to 1. Thus, the information available from such analyses addresses 

only tangentially the main issues of interest. Nevertheless, what information they 

give is largely uncontaminated by selection bias. 

Temporal selection biases and frailty biases 

Selection effects can also affect the timing of vaccination within individuals, thus 

introducing further bias in mortality ratios. These biases arise when vaccination of a 

child is delayed owing to disease that may be associated with mortality (Fine and 

Chen, 1992). The effect of this is to bias the relative mortality towards zero. Such 
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effects are likely to be universal, but have not been widely mentioned; two 

exceptions are (Lehmann et al., 2005, Breiman et al., 2004). 

None of the methods for controlling selection biases so far mentioned, including self-

matching, will control such temporal selection biases. Ideally, one would need to 

control for a time-varying state of health variable, which is impractical. A simple if 

ad-hoc adjustment is as follows. Define a lag period d, and in a Cox survival analysis, 

for an individual time of death t, only count vaccinations to time t – d, thus 

discounting the possibly biased allocation of vaccines in the interval just preceding 

the death. (Note however that this approach may not be feasible for vaccinations 

given close to birth, such as BCG.). (Breiman et al., 2004) used a lag period of d = 30 

days. We recommend that, where possible, analyses of this sort are undertaken in 

addition to the standard analyses (with d = 0) so as to document this possible source 

of bias, and that details are provided of the reclassification of vaccination status 

involved. 

The temporal selection biases just described relate primarily to the impact of short-

term illness on timing of vaccination. Frailty bias, on the other hand, results from 

differential vaccination patterns in children according to their underlying state of 

health. Frail children (that is, children with worse than average health) may tend not 

to be vaccinated. If this is the case, then frail children (who may be more likely to die) 

are likely to be selected into the unvaccinated group, and more robust children (who 

may be less likely to die) into the vaccinated group. The longer the comparison is 

extended the more biased the comparison will be. For example, a comparison of 

mortality in children receiving no dose of DTP with children receiving 3 doses of 

DTP at a given age contrasts children who are so frail that they have not yet been 

able to start on DTP with children who are robust enough to have received three 

doses. 

Information bias 

Commonly, not all data on outcomes and vaccinations are available. Randomly 

missing data will generally result in non-differential misclassification, and hence will 

bias mortality ratios towards 1. However, if the mechanism causing the data to be 

missing is related in some way to the exposure or the outcome, the presence of 

missing data may result in differential misclassification and hence generate 

information biases. 

We consider in turn biases arising from missing data on outcome, and missing data 

on exposure. Detailed consideration of the data ascertainment process in each study 

setting is required in order to assess the likely presence, direction and magnitude of 

any information biases (Fine et al 2009).  
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As a general rule, we recommend that studies should provide detailed numerical 

accounts of missing data and reasons for missingness. Such information is best 

provided in the form of a flow diagram, as is now the norm for reports of clinical 

trials, as this indicates clearly at what stages the data were missing.  

Ascertainment of outcome 

Deaths are typically recorded in periodic follow-up surveys of the study cohort. In 

most studies, it is unlikely that dead/alive status will be subject to much 

misclassification. There may, however, be errors in the recorded date of death, 

particularly when there are long time intervals between surveys. However, errors in 

dates of death are perhaps unlikely to be associated with vaccination status. In 

consequence, the effect of such errors is most likely to bias mortality ratios slightly 

towards unity. 

Ascertainment of vaccinations 

In some populations, vaccination records are made at the time of vaccination and 

held centrally by a single agency. In this case, vaccination status is documented by 

consulting these central records (Lehmann et al., 2005, Breiman et al., 2004) and 

Study 1 of (Elguero et al., 2005). Recording errors made at the time of vaccination or 

at time of database reconciliation are unlikely to be associated with subsequent 

mortality. Thus, such errors may introduce a bias in mortality ratios towards 1, and 

such bias might be expected to be slight. 

In other situations, vaccinations are recorded on vaccination cards held by the 

mothers (or other guardian). In this case, vaccination status is documented by 

consulting vaccination cards at regular surveys (Vaugelade et al., 2004, Kristensen et 

al., 2000) and Study 2 of (Elguero et al., 2005).  

Ascertaining vaccination status in this way generates two problems: first, how to 

interpret absence of the vaccination card; and second, the fact that vaccinations are 

ascertained retrospectively, and hence that the ascertainment process might be 

affected by outcomes, resulting in ‘survival bias’ (Jensen et al., 2007). We consider 

both problems in turn. 

Missing vaccination cards 

One may distinguish two cases: (a) the mother is interviewed, and says no card has 

been issued; and (b) the mother cannot be interviewed, or else the card is known to 

have been issued, but cannot be inspected. In case (a), the child should be coded as 

unvaccinated, whereas in case (b), the vaccine status should be coded as ‘missing’. 

This was the method used, for example, by (Kristensen et al., 2000). 
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Some surveys do not distinguish between cases (a) and (b), and ‘no card’ is always 

taken to mean ‘unvaccinated’. This will necessarily introduce some misclassification. 

However, provided that ‘missingness’ is not associated with outcome, coding 

‘missing’ as ‘not vaccinated’ in this way should not introduce any differential 

misclassification, and thus the mortality ratio should be biased towards unity. 

We recommend that as much information as possible is collected on the 

ascertainment process, so that the likely effect of biases can be investigated. In 

particular, we recommend that a clear distinction is drawn between cases (a) and (b), 

with textual descriptions of circumstances where appropriate. It is also important, for 

reasons which will become apparent below, to collect information on the dates at 

which cards are seen. 

Survival bias 

Survival bias arises if ‘missingness’ of the vaccination records (as defined in (b) in the 

previous paragraph) is associated with the outcome (namely, death). This can arise, 

for example, if dead children’s cards are destroyed soon after death, as is the case in 

some of the studies undertaken in West African countries: (Vaugelade et al., 2004, 

Kristensen et al., 2000), and the second study of (Elguero et al., 2005). 

This bias has been described in detail (Jensen et al., 2007). Briefly, in such 

circumstances, treating ‘missing’ as unvaccinated will differentially place dead 

children in the unvaccinated group, and hence will bias the mortality ratio towards 

zero. The magnitude of the survival bias increases as the intervals between surveys 

(to ascertain vaccination status) increase, as the proportion of dead children whose 

vaccination cards are destroyed (and who are therefore classified as unvaccinated) 

increases, and as vaccination rates increase. 

In some circumstances, intervals between surveys are short (for example, in the 

study described by (Moulton et al., 2005), the surveys took place every two weeks), 

and hence survival bias is unlikely to play a major role. In other situations, for 

example those described by (Vaugelade et al., 2004, Kristensen et al., 2000), there 

were substantial intervals between surveys, and in such circumstances there may be 

substantial survival bias.  

 

Note also that, whatever the frequency of surveys, survival bias will only be present 

if dead children’s records are more likely to be missing than live children’s records. If 

no records are missing, then there will be no survival bias. If the numbers of missing 

records is small, it is possible to undertake a sensitivity analysis, in which two 

separate analyses are undertaken with missing records coded alternately as 

unvaccinated and then as vaccinated, so as to document the impact of survival bias 

on the analysis. For example, the study of (Chan et al., 2007) achieved near-complete 
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ascertainment of vaccination records. Sensitivity analyses showed that survival bias 

in this study was not an issue. 

 

Landmark analyses 

 

In some circumstances, however, there are large numbers of ‘missing’ records due, 

for example, to the destruction of dead children’s records (or other informative 

mechanism). In such circumstances, survival bias is likely to be substantial, and 

sensitivity analyses are unlikely to be useful, because they yield too wide a range of 

values of the mortality ratio. In this situation, which has commonly arisen in studies 

undertaken in West Africa, a landmark analysis is recommended (Jensen et al., 2007). 

 

In a landmark analysis, vaccination status is never updated retrospectively, and can 

only change at visits undertaken during the subject’s lifetime. Thus, if an individual 

is unvaccinated at visit 1 and vaccinated at some time point between visits 1 and 2, 

that individual is treated as unvaccinated until visit 2 (or death, or censoring, if these 

also occurred between the two visits). Since vaccination status is updated at visits at 

which cards are seen, it is important that the dates at which cards are seen are 

recorded.  

 

This approach avoids survival bias – which biases relative mortality towards zero – 

at the cost of introducing non-differential misclassification, which biases the 

mortality ratio towards 1. This may in certain circumstances be preferable, when it is 

required to avoid producing spuriously protective effects. The bias from the 

landmark analysis increases as the intervals between visits increase and as 

vaccination coverage increases. For further details of this analysis method, see 

(Jensen et al., 2007). 

 

Pros and cons of retrospective updating and landmark analyses 

 

The major advantage of landmark analyses over analyses using retrospective 

updating of vaccination records is that they avoid survival bias. When survival bias 

is large, the landmark approach is best, as it is more robust. However, if survival bias 

is not large, the retrospective updating method is preferable, since it avoids two 

potential problems with the landmark approach: mortality ratios biased towards 1 

even if no survival bias is present, and lower power. 

 

It is instructive, where possible, to undertake both analyses on the same data, and 

compare the results. Table 2 compares the results obtained using different methods, 

based on results published in the literature.  

 

[Table 2 about here] 
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The studies undertaken in Guinea Bissau, Malawi, Burkina Faso and the Philippines 

were analysed by the two methods, using the same data. Relative precisions lower 

than 1 indicate that the landmark method is less precise than retrospective updating. 

Table 2 also includes estimates obtained from two studies in the same population in 

Senegal. Study 1 was undertaken using centrally held vaccination records, and thus 

is not affected by survival bias. Study 2 was undertaken using mother-held 

vaccination cards and retrospective updating, and thus may be prone to some 

survival bias. 

 

In most instances in Table 2, the mortality ratio estimated using the landmark 

method is higher than when it is estimated using retrospective updating (there are 

exceptions however, for BCG and measles vaccine in the Malawi study). In two cases 

(for DTP1 in Guinea-Bissau and Malawi), the direction of association changes, from a 

mortality ratio greater than 1 with the landmark analysis, to less than 1 when the 

data are analysed by retrospective updating. In other cases, the difference is less 

marked. The relative precisions are all less than 1, indicating that the landmark 

method gives less precise estimates than retrospective updating. 

 

We recommend that, where possible, both landmark and retrospective updating 

analyses be undertaken, so as to allow for transparency in the interpretation of the 

results. 

 

Identifying the presence of survival bias  

 

As suggested above, insight into the presence and magnitude of possible biases may 

be obtained by undertaking several analyses by different methods, and by 

conducting sensitivity analyses where appropriate. Some further checks have been 

proposed; these are reviewed below.  

 

It is useful to look at absolute mortality in unvaccinated children in a study, in order 

to check that it is broadly in line with what might be expected in that population. If it 

is not, this might suggest (but does not demonstrate) the presence of a selection or 

information bias (Aaby et al., 2007). It has also been suggested that a large mortality 

ratio of never vaccinated to ever vaccinated might be indicative of survival bias. This 

measure is more problematic, since a large ratio might also be attributable to 

selection effects or to a true effect. A better approach may be to compare mortality 

ratios for different vaccines within the same study, a uniform effect of all vaccines 

being consistent (but not demonstrating) the presence of bias. 

 

Where data on cause-specific mortality are available, as in (Breiman et al., 2004), it is 

useful to conduct separate analyses for deaths in two groups, namely (a) those which 

are believed unlikely a priori to be related to vaccination, and (b) those which cannot 

a priori be ruled out as being caused by vaccination. Since survival bias arises because 
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of outcome-dependent missing vaccination data, it should most likely apply equally 

irrespective of cause of death. 

 

Some further issues 

 

In this final section we briefly detail a few specific issues requiring particular care in 

these applications. 

 

Time line of analysis 

 

The appropriate time line for analysis is usually age, if necessary with delayed entry 

to account for variations in age at entry into the dataset. This is because of the known 

strong relationship between age and risk of death. Vaccinations should be regarded 

as time-varying covariates. In consequence, it is not usually appropriate to calculate 

Kaplan-Meier survival curves for periods over which vaccines are administered, or 

to use standard logistic regression which takes no account of the time dimension. 

Hypotheses relating to the sequence of vaccines should be investigated, where 

possible, with vaccinations specified as time-varying covariates. 

 

Complex interactions 

 

Some of the hypotheses relating to vaccination and childhood survival specify 

complex interactions between vaccination histories and sex-specific mortality. These 

should be investigated both using different strata (for example, separate analyses in 

boys and girls, and in subgroups defined by contrasting vaccination histories) and 

formal tests of statistical interaction. However, we recommend particular caution in 

the interpretation of such analyses, as well as due allowance (whether formally, via 

Bonferroni corrections, or informally) for multiple testing when many hypotheses are 

investigated.  

 

Influential observations 

 

The study of complex interactions between vaccines and gender involves 

subdividing cohorts into several groups, some of which may in consequence be 

small, or contain few deaths. In such circumstances, results can lack robustness 

owing to observations whose omission or inclusion in the analysis produce widely 

different results. Analyses should be scrutinised for such observations, their impact 

assessed, and relevant data on numerators and denominators reported.  

 

Concluding remarks 

 

We have documented the major biases that affect studies of vaccination and 

childhood survival, and made some recommendations about how such issues might 



 13 

be tackled. We have not sought to identify every single source of bias that might 

conceivably arise – an impossible task – but rather, have focussed on those which 

have been discussed in the literature. 

 

In concluding we make two final recommendations. First, that data descriptions and 

analyses should be presented as transparently as possible, and from distinct points of 

view. We hope that detailing the ways in which major bias can occur, as we have 

done, will focus attention on possible issues of contention, which can therefore be 

addressed in primary publications. Second, it is helpful for critiques of studies to be 

focused less on identifying the possible presence of bias – which, in observational 

studies such as those we have considered, is inevitable – and more on assessing the 

likely impact on substantive results and conclusions of the biases identified. 
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Table 1 Interactions between vaccines: selection and biological effects 

 

 Males  Females  

Vaccines Mortality ratio 95% CI Mortality ratio 95% CI 

None 1 - 1 - 

DTP only 0.54 0.24 – 1.2 0.35 0.15 – 0.83 

BCG only 0.57 0.33 – 0.98 0.33 0.17 – 0.62 

Both DTP & BCG 0.59 0.27 – 1.3 0.83 0.43 – 1.6 

Data from: (Moulton et al., 2005)   

 

Table 2 Mortality ratios obtained using different methods on the same data (Guinea 

Bissau, Malawi, Burkina Faso and Philippines) or in the same populations (Senegal) 

 

Study and location Vaccine Landmark 

analysis 

Retrospective 

updating 

Relative 

precision* 

Guinea-Bissau BCG 0.55 0.29 0.44 

(Jensen et al., 2007) DTP1 1.84 0.63 0.48 

Malawi BCG 0.45 0.69 0.62 

(Aaby et al., 2006) DTP1 3.19 0.99 0.33 

 MV 0.42 0.47 0.83 

Burkina Faso BCG 0.50 0.37 0.41 

(Vaugelade et al., 

2004) 

DTP 0.24 0.23 0.21 

 BCG + DTP 0.50 0.34 0.19 

Philippines DTP 0.87 0.43 0.55 

(Chan et al., 2007)     

  Study 1 Study 2  

Senegal BCG+DTP 0.70 0.59 NA 

(Elguero et al., 2005) MV 0.98 0.87 NA 

DTP1: 1st dose DTP; MV: measles vaccine. NA: not applicable.  

* See text 
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